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ABSTRACT. In the past few years the search for a consistent quantum theory of 
gravity and the quest for a unification of gravity with other forces have led to a 
great deal of interest in theories with extra spatial dimensions. These extra spatial 
dimensions are unseen because they are compact and small, presumably with 
typical dimensions of the Planck length, Ipl = 1.616 x 10-33cm. If the *internal” 
dimensions are static and small compared to the large “external” dimensions the 
only role they would play in the dynamics of the expansion of the Universe is 
in determining the structure of the physical laws. However, if the big bang is 
extrapolated back to the Planck time, then the characteristic size of both internal 
and external dimensions were the same, and the internal dimensions may have had 
a more direct role in the dynamics of the evolution of the Universe. Thii chapter 
presents some speculations about the role of extra dimensions in cosmology. 

1. MICROPHYSICS IN EXTRA DMENSIOSS 

Theories that have been formulated in extra dimensions include Kaluza-Klein 
theories [l], supergravity theories [I], and superstring theories [Z]. The exact moti- 
vation and goals of these approaches are quite different, but for many applications 
to cosmology they have several common features and they will be referred to sim- 
ply as theories in extra dimensions. Among the common features of theories in 
extra dimensions are: 

l There are large spatial dimenaiona and small spatial dimensions: If some of 
the dimensions are compact and smaller than the three large dimensions, it is pos- 
sible to dimensionally reduce the system (integrate over the extra dimensions) and 
obtain an “effective” 3+I-dimensional theory. Present accelerators have probed 
matter at distances as small ss lo-%m without finding evidence of extra dimen- 
sions. This is not surprising, as the extra dimensions are expected to have a size 
characteristic of the Planck length. The large dimensions may also be compact. 
If so, their characteristic size is greater than the Hubble distance, 102scm. This 
disparity of about 61 orders of magnitude is somewhat striking. This disparity is 
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THEORY a/a0 G/e 

Kaluza-Klein (b/4)-’ (V4)-D 
(D internal dimensions) 

Superstrings WoY (b/4)-’ 
(6 internal dimensions) 

GFIGOF 

(b/4) -’ 

(b/4) -’ 

Table 1: Variation of fundamental constants with the size of the internal manifold 

usually posed by the question “what makes the extra dimensions so small?” How- 
ever, if gravity has anything to do with the size of dimensions, the only reasonable 
size is the Planck length, and a more appropriate question to ask is “what makes 
the observed dimensions so large?” One possible answer to the the last question 
is infiation. The possible connection between inflation and extra dimensions will 
be explored. 

l The effective low-energy theory depend, upon the internal apace: In Kaluza- 
Klein theories the low-energy gauge group is determined by the continuous isome- 
tries of the internal manifold. In superstring theories, the structure of the internal 
space determines the number of generations of chiral fermions, whether there is 
low-energy supersymmetry, etc. If the internal space is distorted in any way the 
effective low-energy physics could be very different. 

. The fundamental constants we observe are not truly jundamentak In theo- 
ries with extra dimensions the truly fundamental constants are constants in the 
higher dimensional theory. The constants that appear in the dimensionally re- 
duced theory are the result of integration over the extra dimensions. If the volume 
of the extra dimensions would change, the value of the constants we observe in 
the dimensionally-reduced theory would change. Exactly how they would change 
depends upon the theory. In Kaluza-Klein theories, gauge symmetries arise from 
continuous isometries in the internal manifold, while in superstring theories the 
gauge symmetries are part of the fundamental theory. In all theories the gravita- 
tional constant is inversely proportional to the volume of the internal manifold. In 
the most general case there is not a single radius in the internal manifold. How- 
ever, for the sake of simplicity it will be assumed that there is a single radius, b, 
which characterizes the internal manifold. The b dependence of some fundamental 
constants are given in Table 1. In Table 1, a0 is the present value of the fine 
structure constant, G” is the present value of the gravitational constant, pF is the 
present value of Fermi’s constant, and be is the present value of b. 

. The internal dimensions are static: If the internal dimensions change, fun- 
damental constants change. Limits on the time variability of the fundamental 
constants can be converted to limits on the time variability of the extra dimen- 
sions. Limits on time rate of change of the fine structure constant (assuming 
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b/al 
5 x 10+-r-’ 

1 x lo-“yr-’ 

13 x 10-13h yr-’ 

2 x 10-“h yr-’ 

15 x 10-15h yr-’ 

METHOD 

Oklo reactor 

Radio galaxies 

QSO 

Primordial 

nucleosynthesis 

5 x 1osyr 

1.8 x 1O’yr 

2 x 10gh-’ yr 

5 x lOgha’ yr 

6.6 x lOghe’ yr 

Table 2: Constraints on the time variation of the fine structure constant 

that the change is a power law in cosmological time) are given in Table 2. The 
look-back time, Ar, is the maximum time over which the limit may be applied. 
For the look-back time, an n = 1 cosmology WBS assumed, i.e., a present age of 
(2/3)&l = 6.6 x 10gh-‘yr. Long look-back times are relevant if the change is 
not a power law in cosmological time. It is interesting to know how soon after the 
bang the internal space had essentially the size it has today. The limit with the 
longest look-back time is the limit from primordial nucleosynthesis. 

Primordial nucleosynthesis is a sensitive probe of changes in a, since the 
neutron-proton mass difference Q = m, - mp = 1.293 MeV has an electromag- 
netic component. Although the details of the neutron-proton mass difference are 
not known, it is reasonable to assume that the electromagnetic contribution is the 
same size (but the opposite sign) BS the entire difference. With this assumption 
alao = Q/Q’, where Q” is the value today. 

The neutron-proton ratio at freeze out given by Eq. 1.78 is exp(-Q/T,), so 
n/p is very sensitive to small changes in Q. The primordial ‘He mass fraction 
as a function of b/b0 is given in Fig. 1, assuming that a, G, and GF depend on 
b/b0 BS in Table 1. The curve labeled “SS” is the superstring model (D = 6), and 
the curves marked ‘KK2” and ‘KKr” are Kaluza-Klein models with D = 2 and 
D = 7 internal dimensions. The allowed range of the primordial ‘He, Yp = X, = 
0.24 f 0.01. For the superstring model, the primordial helium is within acceptable 
limits only if at the time of primordial nucleosynthesis 1.005 2 b/b0 2 0.995. The 
Kaluza-Klein models give the slightly less stringent result 1.01 2 b/b, > 0.99. In 
either case, by the time of primordial nucleosynthesis the internal dimensions had 
obtained a size very close to the size they have today [3]. 

. The ground state geometry does not have all the symmetries of the theory: 
It is generally assumed that the ground state geometry is of the form M’ x 
BD, where M’ is four-dimensional Minkowski space, 1 and BD is some compact 

‘The wrumption of M’ is not quite correct in a cosmological context, and should be replaced by 
R’ x Ss for the closed model, R’ x Q” for the open model. 
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Figure 1: The primordial rnms fraction as a function of b/4 

D-dimensional space. The symmetries of the ground state are generally not as 
large ss the symmetries of the theory, i.e., there is spontaneous symmetry break- 
ing. One of the results of SSB is the existence of a massless (at least at the classical 
level) Nambu-Goldstone boson, which is sometimes called the dilaton. 

l The spectrum contains an infinite number of massive states: If the radius of 
the internal space is b, then b-l sets the scale for the massive states. The spectrum 
of the massive states depends upon the type of theory and the structure of the 
internal manifold. Since b is expected to be close to t~l, the massive states should 
have mssses close to mpi. 

2. STABILITY OF THE INTERNAL SPACE 

All theories formulated in extra dimensions must contain some mechanism to 
keep the internal dimensions static. In the absence of such a mechanism, the extra 
dimensions would either contract or expand. The origin of the vacuum stress 
responsible for this is unknown. Here, some toy models are given, along with some 
possible cosmological effects. 

In theories with extra dimensions new types of interactions may arise. For a 
starting point, consider the Chapline-Manton action [4], which is an N = 1 su- 
pergravity and an N = 1 super-Yang-Mills theory in 10 space-time dimensions. 
This theory is thought to be the field theory limit of a IO-dimensional superstring 
theory. It is not at all clear that the lO-dimensional field theory limit of the super- 



string ever makes sense. The lo-dimensional field theory description obtains only 
in the region between two similar energy scales. The 6rst scale is determined by 
the string tension. It is the scale above which it is necessary to include the massive 
excitations of the string. Above this scale physics is “stringy” and any point-like 
field theory description is inadequate. The second scale is the compactification 
scale, which is determined by the radius of the internal space. At distances smaller 
than the compactification scale dimensional reduction no longer makes sense, the 
3+l-dimensional description is inadequate, and the lO-dimensional theory must be 
used. The lO-dimensional field theory description makes sense at distance scales 
larger than the string tension scale, but smaller than the compactification scale. 
Since these two scales are expected to be the same order of magnitude, it is not 
clear if the lo-dimensional field theory description ever obtains. Nevertheless, it 
offers a convenient starting point for an exploration of cosmology in extra dimen- 
sions. 

The Chapline-Manton Lagrangian contains the N = 1 supergravity multiplet 
{es,; $M; BMN; A; a}, where e$ is the vielbein, $M is the Rarita-Schwinger 
field, BMN is the Kalb-Ramond field, X is the sub-gravitino, and o is the dilaton, 
and the super Yang-Mills multiplet {GMMN; x}, where G,+,N is the Yang-Mills field 
strength and x is the gluino field. The Lagrangian is 2 

exp(-a/2)TrGMNG MN 

-i (TrxrMNpX)’ + exp(-o/2)H~NpTrXrMNpx + ... P-1) 

where PNp = TI”I?NI’Pl, and HMNP = +B~pl. Four fermion couplings and 
other terms have been omitted. 

The %istein equations” are straightforward to obtain: 

&MN = i exp(-0) (HMPoHNP’ - ~~~NHPo~zH~~~) 

-exp(-o/2) (TrGMpG{ - $mNTGaGPu) 

‘The following notation will be used: D =number of extra dimensions; M, N, P, Q, . run 
from 0 to D+S; p, Y, p, are indices in the extra dimensions; and m, rz, p, q, are indices 
in the large spatial dimensions. 
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-&X% - ; (!hjirPQRX) (T;rpoRx) g&,N 

-A (TrXrPgRX)2gMN + ~~(-u/2)H~%‘r~r,vp~~ 

(2.2) 

The task at hand is to solve Eq. 2.2 to find the equations of evolution of the scale 
factor(s) in the expansion of the Universe toward the quasi-static ground state 
of the system where there are D static dimensions and 3 dynamic dimensions 
expanding as in a standard FRW cosmology. 

In general it is necessary to choose background field configurations. For ex- 
ample consider the “bosonic” parts of the equations. What are the symmetries 
of the metric? What are the vacuum (background) values of Hnn~p, of GMN, of 
jirx, of XI’& of a? In general, many (possibly infinitely many) solutions of the 
field equations are expected, even if there is but one ground state that describes 
the microphysics of our Universe. The immediate question to ask is what picks 
out the ground state and what is the evolution of the Universe to this ground 
state? Perhaps when the true string nature of the equations are taken into con- 
sideration there will be but one possible solution to the string equations even if 
there are many solutions to the field theory. Perhaps something in the evolution 
of the Universe prefers a unique or small number of possibilities. Such questions 
are reminiscent of the questions considered in intlation. If the conditions in some 
region of the Universe are such as to enter an inflationary phase, that region of 
the Universe will grow relative to a region that does not undergo inflation. It is 
possible to imagine that the Universe starts in a state with no particular back- 
ground field configuration, but in a quantum state described by a wave function 
* that describes the probability of a given configuration, *(field configurations). 
If in some region of the Universe the wave function is peaked about a particular 
configuration that will inflate some spatial dimensions, that region will grow. All 
that is required to produce the Universe we observe is that there is some region 
that will lead to three spatial dimensions inflating (and some mechanism to keep 
D dimensions static). It may be that the theory is unique, but the ground state 
is not. It may be that somewhere outside of our horizon the Universe is quite 
different. There may be a different number of small versus large dimensions, or 
the internal space may have different topological properties leading to drastically 
different microphysics. Before this speculation is considered, it is necessary to un- 
derstand the mechanism that leads to the stabilization of the internal space. This 
problem will be studied by considering individual contributions to the right-hand 
side of Eq. 2.2. 

For simplicity, the metric will be taken to have the symmetry R’ x S3 x SD 
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&UN = -a'(t)hn 

-bz(t)&w 
(2.3) 

where &,,, is the metric for Ss of unit radius and a(t) is the actual radius, and 5,” 
IS the metric for SD of unit radius and b(t) 
of the Ricci tensor are 

is the actual radius. The components 

-&, = 35.; 

-ha = 
I- 
;+2$+D$+$ gmn I 

-R,, = 
i, D-1 
i+(D-1);+3;;+- 

bZ I 
9PY. 

With the Einstein equations in the form 

RMN = 8d TMN - 
1 

D,,mT% - 

(2.4) 

where e is the gravitational constant in D + 4 dimensions, 3 and A is a possible 
cosmological constant in D + 4 dimensions. All the terms on the right-hand side 
of Eq. 2.2 contribute to TM, and A. 

Symmetries of the stress tensor are usually chosen such that the only non- 
vanishing components of the stress tensor are 

Too = P 

T mn = -P34Jmn 

T pv = -pD5’,w (2.6) 

with TM - M - P - 3P3 - DPD. In terms of P, ~3, PO, and pa = A/&vi? the Einstein 
equations are 

- - 
3a+D; = - 

a z [(D + 1)~ + 3~3 + DPD - PA] 

z 
;+2$+D$; +$ = E [P + (D - 1)~ - DPD + PA] 

D-1 ;+(D-$+3i;+T = z [P - 3&‘3 -t %D + PA]. (2.7) 

SG is related to Newton’s constant G by G = CV;, where V; i.s the volume of the internal space 
today. 



Some possible contributions to the right hand side will be considered in turn. 

l RMN =NOTHING: The simplest possible form for the right hand side is zero. 
For the moment abandon the choice of R’ x S3 x SD, and consider a D + 3 torus 
for the ground state geometry. The spatial coordinates can be chosen to take the 
values 0 5 zi <_ L, where L is a parameter with dimension of length. The general 
cosmological solutions of the vacuum Einstein equations are the Kasner solutions. 
The Kasner metric is 

da’ = dP -g (;)zpi (dz’)*. 

The Kasner metric is a solution to the vacuum Einstein equations provided the 
Kasner conditions are satisfied 

D+3 D+3 

In order to satisfy the Kasner conditions at least one of the pi must be negative. 
It is possible to have 3 spatial dimensions expanding in an isotropic manner and 
D dimensions contracting in an isotropic manner by the choice [S] 

p1 = pz = pJ E p = 
3 + (3D2 + 6D)‘12 

3(D + 3) 

p4 = . ..= P3+D ~ Q = D- (3D2+6D)“’ 
D(D+3) ’ 

(2.10) 

Note that p > 0 and Q < 0. With this choice the metric may be written 

ds’ = dt’ - .‘(t)dg - b*(t)dy”,, (2.11) 

where zi are coordinates of the 3 expanding dimensions, and y’ are coordinates of 
@the D contracting dimensions. The two scale factors are given by a(t) = (t/to)p, 
b(t) = (t/to)‘. 

Somewhat more complicated classical cosmologies have been considered. The 
Kasner model can be regarded as an anisotropic generalization of the flat FRW 
cosmology, i.e., a Bianchi I cosmology. A generalization of the closed FRW model 
is the Bianchi IX model. The Bianchi IX vacuum solutions have the feature that 
the general approach to the singularity is %haotic.” [S] On approach to the ini- 
tial singularity the scale factors in different spatial directions undergo a series of 
oscillations, contractions, and expansions. This feature is quite general, and inde- 
pendent of the state of the Universe after the singularity. The oscillation of the 
scale factors is well described by a sequence of Kasner models in which expand- 
ing and contracting dimensions are interchanged in Ybounces.n Such anisotropic 
behavior is predicted to be the general approach to the initial singularity. The 
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question of whether such a chaotic approach to the initial singularity is present in 
more than three spatial dimensions has been considered. It has been shown that 
chaotic behavior obtains only for models with between 3 and 9 spatial dimensions 
[7]. The importance of this observation is clouded by the fact that at the approach 
to the singularity curvature may not dominate the right hand side of the Einstein 
equations, and near the singularity classical gravity may be a poor description. 

The solutions above do not have solutions with a static internal space and if 
they are ever relevant, it is only for a limited time. The right-hand side must be 
more complicated than nothing. The next simplest thing to consider on the right- 
hand side is free scalar fields. Before discussing their effect on the evolution of the 
Universe it is necessary to discuss regularization in the background geometry. 

The free energy of a non-interacting spinless boson of msss p is given by [S] 

(2.12) 

since finite temperature effects are of interest, the time is periodic with period of 
1/2xT, the relevant geometry is S1 x S3 x SD, and the radii of the spheres are 
1/27rT, a, and b. The eigenvalues of q on the compact space are discrete, and are 
given by the triple sum (hereafter p will be set to zero) 

2T-‘F = 2 2 D,,ln(rZ(2nT)2 t- m(m + Z)a-* 
7=-m m,n=o 

+ n(n+D-l)~-s(, (2.13) 

where D,, is a factor that counts the degeneracy 

D ,,,” = (m + 1)2(2n + D - l)(n + D - 2)!/(I) - l)!n!. (2.14) 

The free energy given by Eq. 2.13 is, of course, i&rite. To deal with the 
infinities, a regularization scheme will be found to extract the relevant finite part. 
For the purpose of regularization, each term in the sum can be expressed as an 
integral using the formula [g] ’ 

d 
lnx = EX’ I*=o= (2.15) 

The finite part of the free energy is given by 

dt t-‘-‘ol(4~2TZt)~~(a-2t)oo(b-Zt) 1 , (2.16) 
,=O 

‘This regulariration ia only valid for D =add. The D =even clue will be discussed below. 



where the functions oi are given by 

u.(z) = 2 (2n + ’ - lJtn + i - ‘)! exp[-n(n + i - I)%]. 
n=O (i - l)!n! 

The full expression for the free energy is quite difficult to evaluate, but the 
free energy is simple in several limits. In the “flat-space” limit the radius of S3 is 
much larger than the radius of SD (a > b) and os + (,/%/4)a3tb3j2. In the limit 
o 2 b the free energy can be approximated by 

j&Y!g (cl - c*(bT)’ - c3(bT)D+‘(, 

where Ri is found from the volume of the i-sphere, Vi = R’Ci with R the radius 
and Ri = (2n)( i+l)/z/Il[(i + 1)/2]. For S3, the volume is I’3 = R327r2, and n3 has 
the familiar form fls = 2n*. The term proportional to cr is the Cssimir term (cr 
is CN of Candelas and Weinberg [9]). The term proportional to cs = a*/90 is the 
leading temperature-dependent term when T Q b-‘. When T B b-‘, the term 
proportional to cs = (2<(D + 4)/7r”/‘)r[(D + 4)/2]/r[(D + 1)/2] dominates. In the 
“low-temperature” limit the radius of the S’ becomes large and ur + (4xtTz)-‘il. 
In the flat-space, zero-temperature limit only the term proportional to cr survives. 

The internal energy is given in terms of the free energy, the temperature, and 
the entropy 

s=- E [ 1 aT n,b ’ (2.19) 

by U = F + TS. The thermodynamic quantities p, ~3, and pD are defined in terms 
of the internal energy: 

u 
P = n3&z3bD 

a 
P3 = - 

3n3nDa3bD 

b au 
PD = - 

Dn3nDaW [ 1 - 
ab o,s 

(2.20) 

The thermodynamic quantities in zero temperature, low temperature, and high 
temperature limits are given in Table 3. There are several obvious limits of Table 3. 
In the zerc-temperature or in the low-temperature limits, dimensional reduction 
is possible. Upon integration over the internal dimensions the effective three- 
dimensional energy density and pressure is obtained by multiplication by VD = 
nDbD. After dimensional reduction the Casimir terms are proportional to clb-‘. 
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Casimir Low Temperature 

T=O 0 5 T 5 b-’ 

P CllnDb’+D (n2/30)T’/nDb’+D 

P3 -c$70b'fD (n2/90)T’/nob4+D 

PO 4cl/DnDb’+D 0 

TM M 0 0 

High Temperature 

T > b-l 

(D + 3)c3TD+‘/nD 
cd- D+4piD 

C3TDC'jnD 

0 

Monopole 

T=O 

fo’/2b2D 

- f; /2b2D 

f;/2b2D 

(4 - D)fo’/2b2D 

Table 3: Contributions to thermodynamic quantities 

The low-temperature limit after dimensionalreduction is p = 3~3 * (7?/30)T’ and 
pD = 0, which is the expected contribution for a spinless boson in 3+1 dimensions. 
In the high-temperature limit dimensional reduction does not make sense. 

It is possible to perform a similar analysis for particles of higher spin. The 
technical details are more difficult, but the physics is quite similar. 

l Rp,,MN =RADIATION: \lO] Consider the “high-temperature” (T 2 b-l) ‘ilat- 
space” (a > b) limit with A = 0. In this limit TMN is isotropic in the sense that 
ps = pD G p (see Table 3). The Einstein equations are 

6 
34+Di = -8n~p 

a 
. 

;+2;+D$ = 8&p 

D-1 
;+(D-l);+3;;+-b?- = 8nCp. (2.21) 

In keeping with the flat space assumption the 2/a2 term has been dropped in 
R,,,,. The equation of state is p = Np, where N E D + 3. The conservation law 
T”$ = 0 implies 

paN+’ = constant, (2.22) 

where a a: (a3bD)liN is the mean scale factor. Since p 0: TN+‘, there is a conserved 
quantity SN = (c?T)~ that is constant. This is simply the total N-dimensional 
entropy. 

The Einstein equations (or a subset of the Einstein equations and the T”$ = 0 
equation) can be integrated to give a(t) and b(t). A typical solution is shown in 
Fig. 2. Both scale factors emerge from a initial singularity. The scale factor for 
the internal space reaches a maximum and recollapses to a second singularity. As 
b approaches the second singularity a is driven to infinity. The parameter z/s, in 
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Figure 2: Evolution of the scale factors for RMN =Radiation 

Fig. 2 is a measure of the time in units of the time necessary to reach the second 
singularity. 

The evolution of the temperature is shown in Fig. 3. The figure demonstrates 
the rather striking feature that se the second singularity is approached, the temper- 
ature increases. The expansion of a together with an increase of T seems unusual. 
However it is simply due to the conservation of entropy. In the region of growing 
T the mean volume of the Universe is actually decreasing, and the temperature 
must increase to keep SN constant. 

The assumption of the flat-space limit for S3 can be easily justified. Imagine 
that the spatial geometry is S3 x SD. If a 1: b in the high-temperature region, 
once the maximum of b is reached, the S3 will be inflated. The only requirement 
is that the curvature term, l/a2, is small compared to the thermal term, 8&p, at 
b=&. 

In the approach to the second singularity the combination of expanding and 
contracting dimensions behaves like a Kssner model. A recurring feature in the 
analysis as presented in this review is that as the models become more baroque, 
there are limits in which the expansion can be approximated by only a part of 
the entire model. This is why consideration of the influence of individual terms 
contributing to TMN is relevant. 

In the period of increasing a and T, the entropy in the three expanding diien- 
sions increases. Of course the total entropy is conserved, but in the approach to 
the second singularity entropy is squeezed out of the contracting dimensions into 
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Figure 3: Evolution of the temperature for the solution of Fig.2 

the expanding dimensions. The 3-entropy, Ss will be defined as & = (d~sZ’)~, 
where dHs is the horizon distance in the 3-space 

dm = a(t) jot dt’a-l(P). (2.23) 

In the approach to the second singularity, dH3 -t co and T -+ 00, so Ss -+ 05. 

Before the second singularity is reached, two things must happen. First, there 
must be some mechanism to stabilize the internal dimensions. The other thing 
that must happen is that the high-temperature assumption will break down. The 
decrease of b outpaces the increase in 2’ and eventually the assumption T 1 b-’ 
will fail. When this occurs it is necessary to use the Yaw-temperature” form of the 
free energy and the only dynamical effect of the extra dimensions is the change 
in G. The increase in Ss shuts off at this time. The conditions necessary to 
generate a significant amount of entropy in the three expanding dimensions have 
been studied. It is impossible to create an enormous amount of entropy without 
either very special initial conditions or extrapolating the solutions beyond the 
point where the high-temperature assumption breaks down. 

l RMN =Casimir + A 191: The combinationof Casimir forces plus a cosmological 
constant can lead to a classically stable ground state. With p, ps, and pi from 
Table 3, the Einstein equations in Eq. 2.7 becomes 

i 31+Di = 
a 

b4-D _ p* 1 
I3 



_ D - 1 7’ (2.24) 

Note that the curvature of S3 has been neglected (l/a’ -+ 0), and that the cur- 
vature term for SD ((D - l)/bz) has been moved to the right hand side of the PV 
equation where it belongs. 

The search for static solutions involves setting the left-hand side of the equa- 
tions to zero. Setting the left-hand side to zero involvessetting the time derivatives 
of both a and b equal to zero. The value of b for this static solution will be denoted 
as bo. The first or the second equation determines bo in terms of p,, 

4FD = (= “+“2)clp*. (2.25) 

Remembering that G = GVn the i equation can then be used to determine b in 
terms of the Planck length 

It is useful to rewrite the equations once again, this time in terms of b,, 

3;+D; = -(D - l)b,’ 

; + 2; + D$ + ; = -(D - l)biz 
[A-(ty+“-&-] 

;+(D-1)$+3$ = (D-1)&,-,-2 
4fD 

+?m 
4+D 

\“/ J 

Of course at b = bo the right-hand sides of the equations vanish. 

(2.27) 

For 
In general there may be other interesting solutions to the system of equations. 
instance in the limit where a and b both go to infinity, then the right-hand 

sides of all the equations approach a constant given by 

HZ = =P’ - l)b-, 
4+D ” (2.28) 



In this limit the solution to the system is o(t) = b(t) = exp(iHt/&). This 
solution describes exponentially growing scale factors for both S” and SD. 

The static minimum b = b, is stable against small perturbations, since 6b(t) = 
b(t) - b. has no exponentially growing modes. However the existence of the ex- 
ponentially growing solution for o and b implies that if b is ever large, it would 
grow without limit. This suggests that the static minimum is not stable against 
arbitrarily large dilatations. This point will be discussed in detail shortly. 

In order to search for other solutions, and to study the semiclassical instability 
in compactification, the radius of the extra dimension will be expressed as a scalar 
field in a potential in four dimensions. The equation for 5 looks like the equation 
of motion for a scalar field if the A* term is neglected on the right hand side, and 
the left hand side is regarded &s LW(b)/ab. Th e correct function of b to regard as 
the scalar field is determined by the kinetic part of the action. The kinetic part 
of the gravitational action is 

Sk=-’ 
16nG i 

&+D 
W=i%&, 

where RI. is the part of the Ricci scalar containing time derivatives of b: 

Rk=-Db;+(D-I)(;)‘+;]. (2.30) 

Upon integration by parts and integration over the internal space the kinetic part 
of the action becomes 

S, = -D(D - 1)2 / d4rJ+-)D-Z (;)‘. 

If a scalar field 4 is defined as 

4(b) = [s]“* (;)““-P, 

it will have a canonical kinetic term. With this definition of 4 the 8 equation 
becomes 

(2.33) 
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Figure 4: The potential for Casimir+A 

where dV/db is the right hand side of Eq. 2.27 with the substitution of d(b) for 
b. The potential is found by integrating dV/d& 

V(4) = ($;y))* (=$L;, (($J’” - (A.)’ 

+ E [(2-)“D-“‘D~l]}, (2.34) 

where 4s = q+(bO) is the value of e5 at the static minimum, 4s = [(D-1)/2rD]‘~zmp~. 
There is an integration constant from integrating dV/dd to 6nd V(d). The inte- 
gration constant has been chosen to give V(&) = 0. A graph of V(b) is given in 
Fig. 4 for D = 7 and cr = 1. 

The figure illustrates several interesting features. The first feature is that 
the static minimum is perturbatively stable, but for 4 greater than some value 
the potential is unstable. There is also a maximum to V(4) that corresponds to 
dV/dd = 0 that corresponds to a solution with b static, but a expanding expo- 
nentially. A discussion of the semiclassical instability of the static solution will be 
discussed shortly. 

l RMN =Monopole+A [ll]: The previous model used quantum effects from the 
Casimir effect to stabilize the extra dimensions against the cosmological constant. 
It is also possible to balance the effects of a classical field against the cosmological 



constant. Consider the Einstein-Maxwell theory in six space-time dimensions. The 
action for the model is given by 

The effect of the Maxwell field in the Einstein equations will through its contribu- 
tion to the stress tensor 

TMN = FMqF: - $,i&qFPq. 

The ground state geometry will be assumed to be R’ x S3 x S*, where as before 
a > b. The monopole ansatz has vanishing components of FMN except for indices 
in the internal space: 

F,w = d=Gpvf(~)r (2.37) 

where f(t) is a function of time and 92 is the determinant of the Sz metric. This 
ansatz, of course, satisfies the field equations for FMN. The Bianchi identities can 
be used to express j(t) in terms of the S* radius, j(t) = fo/b(t), where je is a 
constant. 

With the monopole ansatz for F MN the non-vanishing components of the stress 
tensor are 

T 00 =:f,l. _ T =e%, 
2b” m* 2b4mn’ 

TMy = ;$p. 

The contributions of the monopole configuration to p, ~3, and p2 are given in Table 
3. The Einstein equations with the cosmological constant plus monopole are 

6 i - I,’ 3;+2i = -2nC F--p” 
[ I 

. . f2 ;+2;+2;;+; = -27s F-PA [ 1 
i, Q . . 

fo2 &-p3;; = 2xc 3,+ -$. [ 1 (2.39) 

The static solution in terms of fs is 

fo? 
PA = - 

bi 
b; = E&f;. (2.40) 



To illustrate the potential it is again useful to express the Einstein equations in 
terms of ba 

3:+2$ i -$ 

4 

= 0 10 ; -1 1 
!!+,~+2~;+$ = -$ 
(1 [i) 1 

i+-I>3;; ; i!j3(;):I:L4(!?$, 
i, 62 

(2.41) 

In addition to the static solution at b = bo, there is a quasi-static solution at 
b = fib,, where b is static, but a increases exponentially a = ~exp(Ht)), where 
H = a/36,,. Finally, there is the solution as both a and b + 03 where both scale 
factors increase exponentially with rate H = 1/2&b. 

By the same methods as developed for the Casimir case, it is possible to define 
a scalar field and a potential for the scalar field. The potential is very similar 
to Fig. 4. This model is also unstable against large dilatations of the internal 
dimensions. 

The monopole compactification was considered in D = 2 for simplicity. The 
extention to larger D will be considered in the section on inflation. 

l RMN = RZ + A [12]: The Cssimir, monopole, and cosmological constant 
terms can arise in the Chapline-Manton action. Although terms such ss R*, 
RMNR MN, a-d &.mPqR MNPo do not appear in the Chapline-Manton action, 
they are expected to be present in superstring theories, and probably all other 
extra-dimension theories as well. Consider the gravitational action for a theory 
with such terms given by 

S=-’ 
16xG J d4+Dze[R + 2A + alR’ + CZ~RMNR~~ 

+ a&NpqRMNPq ( . 

There is a M’ x SD solution if the following conditions are met: 

0 < D(D - 1)ar + (D - 1)~ + 2~ 

0 < (D - 1)~ +Zax 

0 < a3 

A=: D(D - 1) 

4 =(= - l)al + (D - 1)a2 + 2a3 

(2.42) 

(2.43) 

At the M’ x SD minimum, the value of b ia 



b; = 2D(D - l)nl + 2(D - 1)~ + 403. (2.44) 

The potential in this case is more di5cult to analyze since there are higher 
derivative terms in the equations of motion. Nevertheless it has been shown that 
there is a solution corresponding to b -constant and a increasing exponentially. 
Such a solution corresponds to a local maximum in the potential as in the Cssimir 
or monopole cases. The difference in this case is that the location of this local 
maximum is a function of the ai’s, and for 

12/D - 3 
a3 = 2 - 24/D(D - 1) a’1 

the local maximum will be at b = co. This means that the M’ x SD minimum 
is a true global minimum and is stable against large dilatations of the internal 
space. For the D = 6 case, the ghost-free action obtains for the case a3 = -a2/4, 
while Eq. 2.45 gives as = -5ar/6. The effect of the higher derivative terms in the 
equations of motion for a(t) and b(t) have been studied in both cases. 

The possibility of using this model for inflation will be discussed below. 

3. SEMICLASSICAL INSTABILITY OF COMPACTIFICATION [13] 

In the Casimir +A case, the monopole +A case, and the R* + A case where Eq. 
2.45 is not satis&d, the static solution is not the true minimum of the theory. If 
the radius of the extra dimensions can be treated as a scalar field, it is possible to 
calculate the lifetime of the Universe against the decay of the false vacuum. The 
Casimir case will be used BS an example. 

Eq. 2.34 looks like the potential for a scalar field 4(x, t). The definition of &I 
in terms of b has been done to have the proper kinetic term for 4. With the four- 
dimensional gravitational degrees of freedom treated as a classical background, the 
problem of calculating the lifetime of the metastable state is identical to the decay 
of the false vacuum. For D = 7, V(4) has a local minimum at 4s z 0.37mp1, a 
local maximum at & !z 0.725mp1, and a point degenerate with the local minimum 
at I$T = 0.96mpl (see Fig. 4). 

The potential can be approximated in the region 0 5 4 < 4~ by (cr has been 
set to 1) 

V(J) u 0~393A$~ - 0.159A$3/mp,, (3.1) 

where 4 = & + 4s has been shifted to place the me&stable state at the origin. The 
potential has the form V(q) = M*$/2 - 6J3/3 for which the tunnel action has 
been calculated. The tunnel action is SE z 205Mr/S’ [14], which in terms of A 
and mpl is SE = 165m&/A. 

The decay rate per unit four volume is 
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Figure 5: The temperature dependence of the Casimir potential 

r 2 7&exp(-SE), (3.2) 

where the pre-factor has been chosen ss m$, on dimensional grounds. Ln a matter- 
dominated Universe the probability for decay becomes of order unity in a time T 
given by r’ = QnT/165 c- rn;,! exp(4lmsJA). This is longer than the age of the 
Universe if A 5 0.37&. 

In the Casimir case 

* = D*(D - l)‘(D + 2) 
(D + 4)*8nq 

rn& = 5.22ms,/cl (D = 7). (3.3) 

In order to have the internal dimensions stay small for the age of the Universe 
requires er 2 17.4. For S’ a single scalar field contributes cr = 8.16 x lo-‘, so 
to satisfy the demand of longevity requires that there be more than 21,326 scalar 
fields. s Since the effective cr’s for higher-spin fields are larger, somewhat fewer 
are required. 

There is also a finite-temperature instability present in the compactification. 
If the temperature-dependent terms in the free energy are included, the potential 
as a function of temperature has the form of Fig. 5. At high temperature the 
potential has no metastable state. The scalar field would not be trapped in the 
metsstable phase if when b z bo the temperature is large and temperature effects 

sIf there are N scalar fields, the eEective cl is N times the cl for a single field. 



are important. The temperature when b = 6s depends upon the initial entropy. In 
a high-entropy initial condition the temperature will be large and compactification 
will not occur. The requirement that b should be trapped in the met&able state 
requires a low-entropy Universe, and the large entropy of the Universe must be 
created after compactification. 

4. INFLATION AND EXTRA DIMENSIONS 

The models of the previous section have illustrated the point that there are 
several mechanisms to force the internal space to be static and small. Although 
the mechanisms have different origins they all have in common the feature that 
there is a balance of forces at a particular value of b % 4. If b # b,~ there 
is an unbalanced stress in the vacuum. This unbalanced stress in the vacuum 
looks like a cosmological constant that can drive exponential expansion of all the 
dimensions, or just three dimensions. For instance in the monopole case discussed 
above, at b = &b, there is a solution corresponding to static internal dimensions 
and exponentially expanding external dimensions. At b = fib, the equation of 
motion for o is found from the (DO) equation: 36/a = 2/9b& which has solution 
a (x czp(Ht), with HZ = 2/27bs 

It is possible to imagine a scenario of new in5ation where the exponential phase 
occurs for b = &bo, and is terminated when b settles to the local minimum at 
b = bo. This is probably not a good example, because the potential is similar to 
the potential in Fig. 4, which is not Phe type of potential needed in new inflation. 
Even if for some unknown reason the Universe was ever in a configuration of 
b = fib0 and b static, quantum or thermal fluctuations would push b away from 
the unstable extremum. Even if it would roll in the correct direction toward the 
metastable minimum, the transition would be completed before sufficient in5ation 
occurs. 

A lesson learned from new inflation is that one should not be deterred by failure 
of simple models. For instance the R* +A model is an existence proof that a model 
can be found. Recall that for a particular value of es/as the potential doer not 
turn over for large b and becomes flat. There can be a large amount of in5ation 
as b evolves toward the ground state. 

In5ation with the inflaton identi5ed as the radius of the extra dimensions has 
some interesting features. Zn the evolution toward the ground state the radius of 
the extra dimensions grows, leading to an increase in the four-dimensional grav- 
itational constant. The reheating is probably due to the change in the internal 
metric. For example, consider a minimally coupled scalar field x with action 

As b oscillates about the minimum of the potential there will be a non-zero value 
of jr that results in an increase of x. Although the details of the reheating remain 
to be worked out, the basic picture has been explored (12,151. 



All the models discussed above involve a D + 4-dimensional cosmological con- 
stant that must be fine tuned to obtain the four-dimensional cosmological constant 
zero at 4. All models (except the R* + A model with Eq. 2.45 satisfied) do not 
inflate and involve an unstable ground state. The introduction of the cosmolog- 
ical constant in the higher dimensional theory is not attractive. The 5ne tuning 
certainly must be incorrect. The unstable ground state cannot be ruled out, but 
seems undesirable. It would be nice if the existence of extra dimensions would 
lead to in5ation. 

Surely any realistic model should work without 5ne tuning of A. One might 
expect a realistic model to work for any effective value of A, and any change in A 
would simply lead to a change in b 0. In other words, if the vacuum energy would 
change, the only physical result would be a slight readjustment of bo. Thii would 
be very attractive, since any cosmological constant produced as a result of SSB 
could be completely absorbed by a small change in bo and it would be unnecessary 
to 5ne tune A at high energies to account for phase transitions at low energies. 
Without extra dimensions there is nothing to do with the vacuum energy produced 
in phase transitions. Extra dimensions may provide a rug under which to sweep 
unwanted vacuum energy. After all, some vacuum energy is needed to keep the 
extra dimensions static. 

The prospect of in5ation from extra dimensions has not been realized in a 
realistic model, but there are no realistic models for compactification. In the 
Chapline-Manton theory there are two massless scalar fields, the dilaton and the 
radius of the internal dimensions. Perhaps one, or both, of these 5elds are the 
dilaton. Both fields have the promising feature that at the classical level they 
have flat potentials. The possibility of a unique 5eld configuration that will lead 
to inflation is interesting. 

The instability for large b in the Casimir and monopole models can be removed 
by considering combinations of the models. 

l RMN =ALL OF THE ABOVE [16]: B e ore combining the contributions it is f 
useful to extend the analysis to products of spheres. Assume a ground state geome- 
tryoftheformR~S~xC&~S,!,withmetricgMN =diag(l,-a*(t)&(z), -bf(t)g,(y), 
. . . , -bz(t)ljw(y)). The D extra dimensions are split into cr &spheres (Cd+ = D). 
The stress tensor will be extended in a similar way by the definition of additional 
pdi. In the monopole and the Casimir cases, the large-b instability was caused by 
the presence of a cosmological constant, which was unbalanced as b + 00. For a 
stable ground state a cosmological constant is probably impossible. The Einstein 
equations without a cosmological constant are 

3;+5&b, = -sQp-T!$ 
;cl bi 



& (pdi - T$(. (4.2) 

with the last equation for each internal sphere and Tz = p - 3pa - EC=1 dip&. 

For forces to balance at a unique value of b = bo it is necessary to have contribu- 
tions to TMN that have different dependences on b. For this reason a combination 
of Casimir and monopole forces will be considered. 

The generalization of the D = 2 monopole ansatz will be used. An antisym- 
metric tensor 5eld of rank d+ - 1 has a field strength FM,N,...Q of rank 4 and has a 
natural Freund-Rubin ansatz on the A-sphere. The stress tensor in terms of the 
field strength is 

TMN = FMP...QFN~‘..~ - ~gj&sp...qFSP-q. 
24 

(4.3) 

With this assumption the monopole configuration leads to 

(4.4) 

The generalization of the Cssimir forces for products of spheres is also straight- 
forward. The first generalization is a single sphere in even dimensions. For even 
dimensions there is an additional contribution to the free energy proportional to 
ln(2n~sb2), where p is a parameter that sets the scale of the path integral. Thii 
parameter can be set by imposing certain conditions on the effective potential. 
The second generalization is to products of spheres. The free energy becomes 
(ignoring the In term) 

F=n3a39, 
i=l bf 

which leads to the thermodynamic quantities 

P = 

(4.6) 



The first example of combining Casimir and monopole forces is a single internal 
D-sphere. Ignoring here and below the possible logarithmic dependence of the 
Casimir force for even dimensions, the Einstein equations are 

3!+D; = _ 
(1 b 

+ (D - l)f;b-2D 1 
; +&+D;; + $ = -8xc 

- 1 
P+2hb-,-D 

Df2 ilD 
+ (D - l)f,b-2D 1 

anC ;+(D-i);+$ = o+2 4(D + 2)c1 b-‘-D + 3f2b-2D Dn 0 
D 1 

D-1 
-7’ 

From the first two equations it is obvious that either cr or j,’ must be negative in 
order to have 5 and i vanish at bo. The combination of the first two equations and 
the last equation gives 

D(D - 1)2 
“= 8r(D+2)(D-4)$ (4.8) 

For D < 4, f,’ must be positive and cr must be negative. Although cr is positive 
for scalar fields on spheres, the sign of the Casimir force is notoriously slippery, 
and for other spins or other geometries it could easily be negative. For D > 4, 
cr must be positive and fi must be negative. Therefore this simple model is only 
viable for D < 4. 

There are other problems with the model. If the potential is constructed along 
the lines of the previous section it is found that the static extremum is a local 
matimum of the potential. The potential is shown in Fig. 6. The point r$/& = 1 is 
the point where a and b are static. The potential becomes flat for large b, but there 
is a small b instability. This potential is sicker than Casimir+A or monopole+A. 
The same problem occurs for a product of D-spheres for the internal space. 

The presence of fermion condensates in the Chapline-Manton action can cure 
the problem. Assume that TrxI’MNPx and j,r~~pX also have the Freund-Rubin 
form on a product of three S3’s. 6 The radius of one of the Ss’s will be assumed 
to be much larger than the other two radii which will be assumed to be equal. If 
all other background fields are set to zero, a classically stable ground state with 
potential given by Fig. 7 is obtained. The new ingredient present in this model 
is that the presence of the fermion condensates change the right hand side of 
the Einstein equations. For the monopole+Casimir example on a single SD, the 
coefficients of the monopole terms in the (00) and (nv) equations were fixed to be 

‘The d&ton is assumed to be a constant in space-time, rr = 00. The d&ton field equation giva 

(fk4NP)2 = P/2) e~(u~/2)BMNP(TT~rMNPX). 



z , r 

-3 

.sy I I I I I I I I I I 

3- 

I 

.s 
I 1 I I I I I I I I 
1 22 1.1 1.s 1,s 2 SP ?.A 2.6 21 

d/h 

-J 
3 

Figure 6: The potential for the Casimir + monopole case 

1 

= .s 
F 

0 

I I I I 

Figure 7: A possible potential for the Chaplin+Manton action 

-25 



THEORY a b 

* 

Table 4: Density of states for superstring theories: p(m) ok m-Oexp(bm) as 

m+oo 

in the ratio (D - 1)/3 (see Eq. 4.7). With the addition of fermion condensates 
this is no longer true. A stable ground state can be found (at least in the limit 
that the radii of the two internal S3’s are not too different). 

It should be noted that the potential in Fig. 7 is not the potential for inflation. 
The effective four-dimensional cosmological constant vanishes as b becomes lsrge. 
This is simply because ss b + 00 there are no stresses in the vacuum to drive 
inflation. This is rather different than the usual case that the further a scalar field 
is displaced from the origin, the larger the cosmological constant. 

One of the lessons from new inflation is that there is a lot to be learned by 
models that fail. All of the models for stable extra dimensions and inflation from 
extra dimensions either fail or have some very undesirable features. Hopefully the 
lessons learned from these failures will point the way to a more attractive model. 

5. LIMITING TEMPERATURE IN SUPERSTRING MODELS [ 171. 

The thermodynamic properties of string theories have been studied for many 
years. All string models have a density of states p(m)=number of states with mass 
between m and m + 6m that increase exponentially with mass for large mass. In 
the large mass limit 

p(m) = cm-“exp(bm). (5.1) 

The constant c will be uninteresting. The constants a and b depend upon the 
theory. Some examples are given in Table 4. In Table 4 o’ is the ‘Regge slope” of 
the string theory. For superstrings a’ is expected to be of order rn;:. 

The traditional way to discuss the thermodynamics of superstrings is to start 
with the canonical ensemble. The partition function for the canonical ensemble is 

ln 
1 + exp (-(k’ + mr)‘/‘/T( 

I - exp [-(k2 + m2)1/2/T] 1 



dmm-aexp(bm)m5.&.[(2n + I)m/T], (5.2) 

where V is the (Q-dimensional) spatial volume, q is the mass below which the 
exponential form of p is a bad approximation, and K,, is a modified Bessel function 
of the second kind. Using the limiting form K”(z) --t z-1/2 exp( -2) the partition 
function may be expressed in terms of the incomplete gamma function 

1nZ L- (~~T)-a+11’21?[-a+ y,v (T&,oT)], 

where Z’s = b-‘. 

The partition function diverges for T 2 TO. The pressure (p), average energy 
((E)), and specific heat (Cv) are given in terms of In Z by 

alnZ 
p=Tay; (E) = T2F; Cv = F. 

For o 5 1312, all diverge as T -) co. For a > 13/2, p and (E) approach a 
constant as T -t To. For o > 1512, Cv also approaches a constant. If the 
thermodynamic quantities approach a constant as T -+ TO, To is not a limiting 
temperature. Therefore the open string has a limiting temperature, but the closed 
or heterotic string does not. What.is happening in this case is that the energy 
fluctuations we becoming so large that the thermodynamic description based upon 
the canonical ensemble breaks down. In this case it is more appropriate to use the 
microcanonical ensemble. When the microcanonical ensemble is used it is found 
that the most likely configuration is that one string carries almost all the energy 
and the remaining strings have very little energy. The specific heat in this csse is 
negative. 

The negative specific heat is quite interesting. A system of strings cannot come 
into thermal equilibrium with a heat bath. The negative specific heat also obtains 
for black holes. A possible connection between black holes and superstrings has 
been the subject of recent speculation. 

6. GUT SYMMETRY BREAKING IN EXTRA DIMENSIONS 

It has been shown that the phase transitions associated with spontaneous sym- 
metry breaking have a multitude of interesting physical and cosmological effects. 
In theories with extra dimensions there is a new type of mechanism for symmetry 
breaking that does not depend upon the Higgs mechanism. The new mechanism 
depends upon a topological non-trivial nature of the internal space and will be 
referred to as topological symmetry breaking (TSB) [18]. 

In the absence of external sources the vacuum configuration for gauge fields is 
FkN = 0. If the fields are defined on a topologically trivial manifold, the vanishing 

2-f 



of F implies that A& = 0 also. However if the manifold is not simply connected, 
then the vanishing of F in the vacuum does not imply that AL = 0. A& # 0 
implies that the gauge symmetry is broken. 

To determine the details of symmetry breaking the relevant quantity is the 
Wilson line u’ related to the path-ordered exponential 

tfi = P exp (i &,dz”) 

where r represents some path in the manifold. If there are non-contractible paths 
in the manifold, then U # 1 and the original symmetry 5 is broken to some 
subgroup U that commutes with u’. The Wilson lines replace adjoint Higgs fields. 

This mechanism has very many interesting properties. Of interest here are 
the properties relevant for cosmology. The first question of interest is whether 
the symmetry will be restored at high temperature. Does u’ go to unity if the 
system is put in a heat bath? Assuming there is a cosmological phase transition 
with this mechanism are topological defects (monopoles, cosmic strings, domain 
walls) produced in the transition ? What is the dynamics of the evolution of the 
system to the ground state? If the system is away from the ground state at high 
temperature, can inflation occur in the evolution to the ground state? 

Finally, in general there may be several possible ground states associated with 
different X’s (including H = 5). At the classical level at zero temperature they all 
have the same energy, namely zero. At finite temperature the state with the most 
massless degrees of freedom will have the lowest free energy. This will correspond 
to the unbroken state. As the temperature decreases a strong coupling phase will 
occur and massive bound states will form and the number of massless degrees of 
freedom in the unbroken state will fall below the number in one of the broken 
state. Will there follow a cascading of symmetry and does it have any physical 
effect. These questions are unanswered at present and are under investigation. 

The Higgs mechanism and SSB has proved to be an interesting part of early 
Universe cosmology. It is likely that TSB will also. 

7. REMNANTS 

The final aspect of extra dimensions and cosmology that will be considered 
here is the survival of a stable massive particle somehow connected with extra 
dimensions. Before discussing specific particles it is useful to recall some facts 
about the survival of massive particles. The expansion of the Universe generally 
stops the annihilation of massive particles (mass M) at a temperature Tf given by 

zf G M/T, - ln (mplMoo) , (7.1) 

where 00 is related to the annihilation cross section 0~ by 



(IUIOA) = 00 ($) -” ( 

It is useful to compare the density of particles under consideration (denoted as (li) 
to the entropy density. After annihilation freeze out and if entropy is conserved 
this ratio will be constant in the expansion. After annihilation ceases, the ratio of 
$% to entropy is given by 

n+1 
y* - 

=I 
napI Moo ’ 

In general 00 a M-“. Since the effective annihilation cross section decreases 
with msss, the more massive a particle, the more likely it is to survive annihilation. 
For masses close to the Planck mass and us = M-*, annihilation is not effective 
and a particle would survive with Yv - 1, i.e., about as abundant as photons. 
This would be a great embarrassment, since it would result in a contribution to f’l 
from the massive particles of about 102’ or so. Creation of entropy, as in inflation, 
could greatly reduce this number. If infiation occurs and the universe is reheated 
to a temperature of TJ < M, the ratio of $J to entropy would not be determined 
by freeze out, but would be determined by exp(-M/TzH). It is likely that this 
number is too small to be interesting today, but it is possible to imagine that M 
is just small enough to result in an interesting value of Yv. 

Here %teresting” means a value large enough to one day be detectable, but 
small enough not to be already ruled out. The most general limit on the abundance 
of massive stable particles comes from the overall msss density of the Universe. 
For a particle of mass M, the limit lX2 5 1 implies Yv < 5 x 10-2’(mpr/M), or 
n+ 5 1.4 x 10-23(mpJM) cmG3. The most useful limit is in terms of the flux 

r of T+!J’s, F+ 5 lo-‘s(mpr/M) cm%- sr -I. It is likely that very majsive particles 
would be trapped in the galaxy and contribute to the mass density of the galaxy. 
In this case the limit is more restrictive. The relevant limit as a function of M is 
shown in Fig. 8. It is denoted Ypo.n 

Now consider candidates for $. 

l PYRGONS [19]: In Kaluza-Klein theories there is an infinite tower of four 
dimensional particles corresponding to the non-zero modes of the harmonic expan- 
sions in mass eigenstates of the higher-dimensional fields. These non-zero modes 
are called Pyrgons. 

In the five-dimensional theory the msss spectrum of the pyrgons is a series of 
spin-2 particles with mass ma = kR-‘, where k is an integer and R is the radius 
of the internal space (in the five-dimensional theory the internal space is a circle). 
In the five-dimensional theory the k = 1 pyrgons are stable. This is because the 
charge operator is proportional to the mass operator. The zero modes are neutral 
and the k = i mode has charge es = i. The kth pyrgon can decay to k number of 
k = 1 pyrgons, but the k = 1 pyrgons cannot decay to zero modes. 

In more complicated Kaluza-Klein theories the mass spectrum is more com- 
plicated, but the general features remain, namely that there are zero modes and 
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Figure 8: Flux limits as a function of mass 

massive modes with mass proportional to the inverse of radii in the extra dimen- 
sions. The question of stability of the pyrgons is a more complicated one. In 
general there may be selection rules that prevent some massive modes from de- 
caying. Such a selection rule is present in N = 8 supergravity models with an S’ 
as the internal space. In general, the only reason one might imagine the pyrgons 
to be stable is if the pyrgon has a quantum number that is not represented by 
zero modes, which will be assumed to include only the observed particles. One 
possibility is if the pyrgon breaks the relationship of electric charge and triality. If 
the pyrgon is color neutral with fractional electric charge, or is fractionally charged 
but a color singlet it could not decay to the known particles (so long ss SUs of color 
is unbroken). The second possibility is that the pyrgon has a quantum number 
that is not shared with any new particle. 

In superstring theories the gauge symmetries arise from a different source, but 
there still might be excitations of the extra dimensions that are stable. There 
might also be excited string states that are stable. In the heterotic superstring 
there are 8,054 zero modes, 18,883,584 k = 1 modes, 6,209,272,150 k = 2 modes, 
. . . (remember the increase is exponential!). Some of these massive modes might 
be stable. 

l MONOPOLES: Just as GUT monopoles correspond to topological defects in 
the orientation of the vacuum expectation value of a Higgs field, there are mag- 
netic monopoles in Kaluza-Klein theories that correspond to topological defects 
in compactification [20]. The Kaluza-Klein monopoles satisfy the Dirac quantiza- 
tion condition ge = l/2 and have masses given by mu - mpl/e - 10ZOGeV. The 
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cosmological production of Kaluza-Klein monopoles is uncertain because there is 
nothing that corresponds to a Kibble mechanism. It is unclear what the high- 
temperature behavior of the SSB will be (151. In this case the SSB corresponds to 
the process of compactification, i.e., the symmetry breaking DifI”+’ + Diff( x I 
where Dill is the diffeomorphism group in n dimensions and I is the isometry 
group of the internal space. Since the symmetry breaking that gives rise to the 
Kaluza-Klein monopoles is topological in nature, the restoration of the symmetry 
cannot be studied by classical methods. 

In theories with TSB, there are additional topologically stable excitations. 
There are magnetic monopoles and particles with fractional electric charge [22]. 
The striking feature of these particles is that the minimum magnetic charge is 
some integer times the Dlrac quantum, - = kgnluc. The minimum electric 
charge is also determined by the integer k, earn = e/k. The expected cosmological 
abundance of these particles has not been estimated. The present flux of the 
magnetic monopoles is limited by the Parker bound, which is the maximumnumber 
of monopoles that can be present without “shorting out” the galactic B-fields. The 
Parker limit ss a function of mass and magnetic charge is shown in Fig. 8 (231. 
Of course, it is always possible to avoid the Parker limit if the monopoles are 
abundant enough that coherent oscillations of the monopoles are the source of the 
galactic B-field 1241. 

There are perhaps other possibilities for massive stable particles. The searches 
for massive stable particles in cosmic rays should be pushed. The detection of any 
particle with mass comparable to the Planck mass would have enormous implica- 
tions for both particle physics and cosmology. 
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